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The spin susceptibility tensor �s
ij�T� of an impure superconductor �SC� with broken mirror symmetry has

been evaluated and a great effect of impurity scattering has been shown. As opposed to conventional singlet
superconductors, where the ordinary impurity scattering is known to have no effect on �s�T�, the spin suscep-
tibility of a polar symmetry superconductor with s-wave pairing can be isotropic and equal to its value in the
normal state in the “dirty” limit Tc��1, while the superconductor stays in a full-gap state. The effect is bound
up with spin-flip transitions which accompany the electron scattering in conductors with the band spin-orbit
coupling.
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I. INTRODUCTION

It is well known that the true nature of the superconduct-
ing state appears more clearly in an external magnetic field.
The major part of phenomena induced by the field, such as
the Meissner effect and the vortex formation in type-II ma-
terials, is intimately connected with the orbital degrees of
freedom of electrons. The importance of the interaction of
the electron spins with the magnetic field begins to be in-
creasingly recognized with the appearance of the micro-
scopic theory of superconductivity.1 It was found that the
Zeeman energy contributes essentially to the thermodynamic
balance of superconductors2,3 and can result in the spatially
dependent order parameter.4 Our concern here is the spin
susceptibility �s�T�. According to the BCS theory, �s�T� of a
conventional �centrosymmetric with the s-wave pairing� su-
perconductor vanishes in the ground state �T=0�. This pre-
diction originally made for pure materials5 has been ex-
tended to alloys soon—the ordinary impurity scattering
should not influence �s�T�.6,7 So a theoretical picture
emerged: all �s�T� at T�Tc is due to quasiparticles and the
condensate of singlet Cooper pairs is indifferent to the Zee-
man interaction. However, results of measurements on the
Knight shift showed a departure from this simple picture.
While �s�T� of light metals such as aluminum agreed with
the theory,8 experiments on more heavy metals, e.g.,
mercury9 and tin,10 indicated that �s�0� is finite for these
superconductors. It was supposed11 that the spin-orbit inter-
action could be responsible for the finite value of �s�0�. A
rigorous theory developed subsequently has confirmed the
hypothesis—the account of the spin-orbit component of the
amplitude of scattering on nonmagnetic impurities u�p ,p��
=a�p−p��+ ib�p−p��pF

−2�p�p�� ·� does lead to a finite
value of �s�0�, leaving the critical temperature Tc
unchanged.12 It was thought for a some time that the paper12

reconciles the BCS theory to the experiments and that impu-
rities and grain boundaries are the only sources of the spin-
orbit coupling at low temperatures, when phonons are frozen
out. Things have drastically changed recently when super-
conductivity in compounds with broken central symmetry
has been discovered and has become the focus of intense
research for uncommon properties that could reveal such ma-
terials �for a review see, e.g., Ref. 13�.

The absence of central symmetry is equivalent to the ex-
istence of the intracrystalline electric field that gives rise to a
term in the one-particle Hamiltonian that �in the case of the
nondegenerate conduction band� is linear in the spin vector
� and linear or cubic in the electron momentum p. In the
case of SCs of polar symmetry, which the following consid-
eration is restricted to, this term has the form14

Hso = ��p� c� · � , �1�

where p and � are, respectively, the electron momentum and
the Pauli matrices, the unit vector c points along the polar
axis, and units in which �=c=kB=1 are used. We shall term
the Hamiltonian �1� the band spin-orbit coupling �BSOC� as
opposed to the impurity spin-orbit coupling �ISOC� consid-
ered in Ref. 12. Examples of bulk SCs of polar symmetry are
Mo3AlC �symmetry P4132�, La5B2C6 �symmetry P4�, Mo3P

�symmetry I4̄�15 and the ternary silicides CeCoSi3, LaRhSi3,
and LaIrSi3 �symmetry I4 mm�.16 The local breaking of “up-
down” symmetry may also occur in quasi two-dimensional
�2D� systems, e.g., near the interface of two different super-
conductors or a superconductor �SC� and a normal metal,17

and at the surface of insulating WO3 when the surface is
doped by Na+ ions.18 In those cases the vector c is one of two
nonequivalent normals to a 2D system. Thus, the BSOC is an
additional and possibly the most powerful source of the spin-
orbit coupling in conductors with broken mirror symmetry.

Naturally one should expect an effect of the BSOC on
spin-dependent properties of the SCs, in particular, on the
susceptibility. Indeed, it results in a finite value of �s�0�:19

calculations carried out for 2D SCs have shown that �s��0�
=2�s��0�= 2

3 �
�pF

	 �2�n at �pF�	 �Ref. 20� and �s��0�
=2�s��0�=�n at �pF
	,21 where �s� ��s�� is the spin sus-
ceptibility for a magnetic field parallel �perpendicular� to the
polar axis c, 	 is the value of the quasiparticle gap at T=0,
and �n is the spin susceptibility of the metal in the normal
state. Analogous results have been derived for 3D SCs
afterwards.22 Measurements, however, show the temperature
dependence of �s

ij�T� at T�Tc to be negligible.23,24

Several explanations of this behavior have been proposed.
One of those attributes it to the effect of strong many-body
interactions.25 There is, however, a subtle pitfall in that ap-
proach which lies in the fact that the quasiparticle decay of
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the Fermi surface does not allow one to prove the Hermitian
property of the renormalized one-particle Hamiltonian,
where the consideration of Ref. 25 is based on, and hence to
ensure the unitarity of the theory. So it is unclear whether the
standard framework of the Fermi liquid theory will be a use-
ful approach in that case. The enhancement of �s�0� �accom-
panied by the dominance of p- or d-wave pairing� was also
found as a consequence of the antiferromagnetic order.26 As
is known, an analysis of a system with two instability chan-
nels �the spin-density-wave channel responsible for the anti-
ferromagnetic order and the Cooper channel� suggests the
account of their mutual influence to be self-consistent, i.e.,
requires the “parquet” approach.27 Yet the antiferromagnetic
order is introduced in Ref. 26 phenomenologically; the effect
of the spin-density wave correlations on the pairing interac-
tion and the effect of superconducting correlations on the
spin-density-wave correlations are neglected. The weak tem-
perature dependence of ��T� could also be a consequence of
the presence of nodes in the energy gap28,29 which can occur
if the admixture of the triplet order parameter, which is pos-
sible due to the BSOC,20 is comparable in magnitude to the
singlet order parameter.

It should be noted that the temperature independent �s
is apparently not a property of a particular non-
centrosymmetric SC but rather their common feature. Such a
behavior was observed, for example, in tetragonal CePt3Si
�Refs. 23 and 24� which exhibits the heavy-fermion behavior
and antiferromagnetic order �Tn�2 K� beyond the super-
conducting transition �Tc�0.7 K�, but also in cubic LiPt3Si
�Ref. 30� which shows no evidence of magnetic order or
strongly correlated electron effects up to the superconducting
transition at Tc�4 K.31 The assumption about nodes in the
energy gap28,29 appears to be universal enough so that it
could be applicable to many non-centrosymmetric SCs; how-
ever, it supposes the magnitude of the BSOC �pF �where pF
is the Fermi momentum� to be as large as the Fermi energy
�F. It should be noticed that all the theories mentioned pro-
ceed on the assumption that the SCs are pure, i.e., �Tc
1,
where � is the elastic relaxation time and Tc is the critical
temperature. In this paper, another one reason for the absence
of a temperature dependence of �s�T� at T�Tc is pointed
out. It is disorder.

There are quite a few reasons to consider effects of disor-
der on SCs without center of inversion. First, scattering cen-
ters are present in most physical situations. Parity-odd SCs
have complex composition, some of them are synthesized by
the arc melting method so that the crystal structure of the
materials does not have to be perfect. Second, the impurity
scattering essentially determines not only equilibrium prop-
erties of the impure SCs but also their nonequilibrium prop-
erties when the scattering provides the main channel for the
momentum relaxation. Finally, there is a special reason to
include disorder into physics of parity-odd SCs—in addition
to the momentum relaxation, the scattering on a scalar, spin-
independent potential simultaneously gives rise to the spin
relaxation. This reason for the spin relaxation can be most
easily explained by using the semiclassical language. For an
electron with the momentum p, the term �1� can be consid-
ered as the Zeeman energy of the electron in a fictitious
magnetic field B f�p�=��p�c� /�B, where �B is the Bohr

magneton and the electron g factor equal to two is assumed.
Hence the spin of the electron precesses about B f�p�. If, as a
result of scattering, the electron goes from a state with the
momentum p into a state with the momentum p�, its spin
will appear under the action of the field B f�p�� and will have
to precess about the new direction. In this way, a stochastic
process of impurity scattering induces a corresponding sto-
chastic process of the fictitious magnetic-field reorientation
leading to a stochastic disturbance of the phase of the spin
precession. The randomization of the spin phase results in a
finite time of “forgetting” by the electron of its initial spin
orientation that reveals itself through the spin magnetization
decay. The described process is the basis of the D’yakonov-
Perel’ �DP� theory of spin relaxation in semiconductors with-
out inversion center.32 When the period of the Larmor pre-
cession in the fictitious field is much longer than the collision
time �, the DP theory gives the spin-relaxation time �so
��−2, where =2�pF�. So the frequent electron-impurity
collisions slow down the spin-density relaxation �so��−1. A
rigorous microscopic quantum theory developed later33 has
confirmed this result. The essential role of the DP process in
spin-dependent phenomena in non-centrosymmetric semi-
conductors is now widely recognized;34 the same may be
expected in the case of non-centrosymmetric normal metals
and superconductors. In particular, the DP process should
influence the spin fluctuations of the superconducting con-
densate at any type of pairing and consequently affect the
spin response of a parity-odd superconductor to a magnetic
field. In fact, it is shown below that in the “dirty” limit �when
�Tc�1, i.e., the mean electron free path vF� is much smaller
than the coherence length �0=vF /2�Tc�, the impurity scat-
tering drives the spin susceptibility of such a superconductor
to that of the normal state, while, just as in conventional SCs,
the scattering has no effect on Tc and the superconductor
stays in a full-gap state.

It should be noticed that recent papers35,36 also discuss
effects of impurities upon non-centrosymmetric SCs, but
substantially differ in the treatment of processes of the
electron-impurity scattering. As is known, the BSOC lifts the
spin degeneracy of the conduction electrons forming the en-
ergy branches with positive and negative helicities—the pro-
jections of the spin of an electron with the momentum p on
the direction c�p. Considerations of those papers were
based on the assumption that the scattering does result in
transitions between the branches. Explicit calculations, how-
ever, do not confirm this hypothesis. The one-particle
Green’s function averaged over impurities positions is diag-
onal in the helicity index. However, off-diagonal components
of two-particle Green’s function which determines �s�T� ap-
pear to be just as important as diagonal components. All
possible scattering channels will be shown to contribute
comparably into the susceptibility and hence should be con-
sidered on equal footing. The exclusion of some scattering
channels leads to the violation of the unitarity of the scatter-
ing S matrix and is a questionable approximation. The effect
of impurities on the spin susceptibility within a model simi-
lar to that used in this paper but with the neglect of the
interbranch transitions was also studied in Ref. 29.

In Sec. II, we describe a simple model based on the as-
sumption of a relatively weak spin-orbit coupling �pF��F.
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The model is mathematically tractable and, we believe, cap-
tures much of essential physics of polar SCs. We also evalu-
ate analytically the static uniform spin susceptibility tensor
both for 2D and 3D electron systems. Section III contains a
discussion of the results obtained, the relevance of the theory
developed to real materials, and suggestions for further ex-
periments. Two Appendixes are included. In Appendix A,
shown is the presence of the triplet correlations in the model
considered in the main body of the paper in which the pair-
ing interaction operates only in the singlet s-wave channel.
In Appendix B we outline a more general formalism, that in
addition to the s-wave pairing, includes the pairing in the
p-wave channel, and give an estimate for the effect of impu-
rities on the triplet part of the order parameter.

II. MODEL AND CALCULATION

To relate to metal surface states and interfaces as well as
layered crystals, we assume first that the system under con-
sideration is two-dimensional �2D�. A modification for three-
dimensional �3D� systems will be given in the end of this
section. The physical model we are using is based on the
following premises. We assume that the spectrum of the elec-
trons in the absence of the interparticle interaction and with-
out reference to the broken “up-down” symmetry is isotropic
�0�p�= p2 /2m and the potential of impurities placed in arbi-
trary distributed points Ri of concentration nimp is short-
ranged U�r−Ri�=U��r−Ri� �then the elastic lifetime � is
given by �−1=mnimpU

237�. So let us consider a 2D system of
electrons with the Hamiltonian H=H0+Himp+Hpair

�s� , where

H0 =� d2r����
+�r� · ����r�/2m

+ ���
+�r��− i � � c� · ������r�� , �2�

Himp = 	
i
� d2r��

+�r�U��r − Ri����r� , �3�

Hpair =
1

2
� d2r1234��

+�r1���
+�r2�V
��
��

��
r1,r2
r3,r4����r4���
+�r3� . �4�

Here, ���r� is the electron field operator and the superscript
+ denotes Hermitian conjugation. In this paper we shall
adopt the conventional character of pairing

Vs

��
���
r1,r2
r3,r4� = �sg��g��

t ��r1 − r2���r3 − r4���r1 − r3� ,

�5�

where the superscript t denotes transposition, and hence the
singlet order-parameter matrix 	��

�s� =	�s�g��, where g= i�2.
Several remarks are in order in connection with the Hamil-
tonian �5�.

�i� The constant � of the BSOC enters the problem under
study in several ways. First, the energy spectrum of H0 con-
sists of two branches of positive and negative helicities �the
projection of a spin on the p�c direction� with energies

�����p�= p2 /2m��p. The two branches have different
Fermi momenta p�� pF�1��� and different densities of
states at the Fermi level N���1���N�0�, where pF

= �2m�F�1/2 ,N�0�= m
2� and �=�pF /2�F. Thus, the parameter �

accounts for the difference between the left- and right-
handed electrons. General reasoning points to small �—the
constant � has a relativistic origin, whereas the Fermi energy
has the atomic scale. Accordingly, in this paper, we shall
treat � as being small so that all powers of � in excess of the
first can be ignored. Other two dimensionless parameters are
�=�pF /�Tc and =2�pF�. The first of them characterizes
the value of the spin-orbital coupling with respect to super-
conducting correlations. The second is proportional to an
angle through which the spin of an electron �with the mo-
mentum p� rotates about the effective magnetic field B f�p� in
time � between two successive collisions; it controls the ki-
netics of spin-flip processes by impurity scattering.32 Both of
them are much greater than �: � /��Tc /�F�1 and � /
���F��−1�1.

�ii� The main concept arisen with the beginning of parity-
odd SCs is that of the singlet-triplet mixing. One should
distinguish between two aspects of the concept. The two-
particle interaction includes all spherical harmonics
�s , p ,d , . . .�. Here we shall assume that the strongest attrac-
tion takes place for electron pairs in the singlet s-wave chan-
nel �the dominant channel� and, for definiteness, that the in-
teraction of electrons in other channels is repulsive. A
conventional SC would have the pure singlet order parameter
�the gap matrix� 	��

�s� =	�s�g�� under such an assumption. But
because the BSOC �1� spoils the classification of the Cooper
pairs in terms of the total spin, the order parameter of a
parity-odd SC can be a mixture of the singlet, 	��

�s� , and trip-
let, subdominant component 	��

�t� �p�=	�t��p̂�c ·����g��.
20

The triplet correlations occurring in that way will be referred
to as the secondary triplet correlations �STC�. The triplet
channel of the pairing, however, is not a unique source of the
triplet correlations. The point is that the major element of the
pairing theory is the off-diagonal Green function �ODGF�,
F���r ,r��= ����r����r��, which manifests a spontaneous
breakdown of the U�1� gauge invariance, rather than the or-
der parameter. The spin structure of the ODGF is identical to
that of the gap matrix 	�� in the case of a SC with the
inversion center. By contrast, the ODGF of a non-
centrosymmetric SC contains the triplet component even at
the singlet order parameter �see Appendix A�. A reason for
these triplet correlations which will be referred to as the pri-
mary triplet correlations �PTC� is broken space parity of the
normal state of the SC.

�iii� The roles of the PTC and STC are totally different in
a SC with small �. First, in the case of a pure SC it has been
shown that the triplet component is much smaller that the
singlet one20 	�t�

	�s�
��

�p

�s
, where �s and �p are the constants the

pairing interaction in s-wave and p-wave channels. An ex-
amination of the Feynman’s diagrams contributing to �s re-
veals that 	�t� enters �s being squared. Therefore, if one
drops corrections of the order of �2, one may put 	�t�=0.
This is equivalent to retaining only the s-wave pairing chan-
nel �5�. All the mentioned results20–22 on �s�T� of clean SCs
was obtained in this approximation. One can show that the
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same estimate for 	�t� /	�s� holds true also for an impure SC
�see Appendix B�. Moreover, in the dirty limit the relative
role of 	�t� is additionally reduced by the factor �Tc. There-
fore, just as for clean SCs, one can disregard 	�t� by evalu-
ating the spin susceptibility. In this way we come to the
minimal model defined by Eqs. �2�–�5�. An advantage of this
model is that it admits an exact analytic approach and there-
fore can serve as a testing area for a search for and an inves-
tigation of uncommon physical properties of superconduct-
ors with broken mirror symmetry. Many of novel effects,
such as the magnetoelectric effect37,38 and an unusual phase
of the condensate induced by an applied magnetic field20,39

was first found by making use of the minimal model. This
model, however, is insufficient for study systems with ��1
in which an effect of the STC may by substantial.28,29 For
example, accidental nodes in the quasiparticle gap28,29 which
require comparable values of 	�t� and 	�s� cannot be obtained
within the model. Some comments on such a situation will
be given in the Sec. III. Here, we shall use the model to try
out classical methods of treating impure SCs �Refs. 6 and 12�
to systems with the BSOC and carry the DP ideas to super-
conductors. Although we shall consider an equilibrium prob-
lem, methods used will be undoubtedly useful at an evalua-
tion of some electrodynamic and kinetic consequences of
broken mirror symmetry when the account of the momentum
and spin relaxation is necessary.

We now turn to the evaluation of the susceptibility. The
thermal Green’s function �propagator� Ĝ is a 4�4 matrix in
the space of a direct product of the Nambu-space �with the
basic set �0 ,�1 ,�2 ,�3� with the spin space �with the basic set
�0 ,�1 ,�2 ,�3�. To avoid confusion the trace in the 2�2 spin
space will be denoted by Tr2 and the trace in the 4�4 space
will be denoted by Tr4. In the case of the pointlike impurity
potential and in the Born approximation to impurity scatter-
ing, the propagator Ĝ has the same matrix structure as that
found for clean SCs.20 Namely,

Ĝ�i�n,p� = � G�i�n,p� F�i�n,p�
F+�− i�n,p� − Gt�− i�n,− p�

� , �6�

G���i�n,p� = 	
�=�
���

����p�G����i�n,p� , �7�

F���i�n,p� = 	
�=�
���

����p�F����i�n,p�g��, �8�

with

�G����i�n,p�

F����i�n,p� � =
1

�i�̂n�2 − ����
2 − 	̃�s�

2 �n�
�i�̃n + ����

	̃�s�
� . �9�

Here, the definitions of the 2�2 spin-matrix Green’s func-
tions G and F are the same as in Ref. 40. The operator

�����p� =
1

2
��0� �p̂� c� · �� �10�

represents the projection onto states with a definite helicity,
�����p�=�����p�−�, �n=�T�2n+1� �n takes on integral val-

ues�, and the functions �̃n and 	̃�s�
2 are assumed to depend

only on �n but not on p. Equations for the c-number func-

tions �̃n and 	̃�s� in terms of �n and 	�s� as well as the self-
consistency equation for the order-parameter matrix have the
standard form41

i�̃n���
0 = i�n���

0 −
1

m�
	
p

G�i�n,p���, �11�

	̃��
�s� = 	��

�s� −
1

m�
	
p

F�i�n,p���, �12�

	��
�s� = T	

�n,p
�sF�i�n,p���. �13�

Note that spin-matrix structure of all constituents of the
theory �propagators and vertices� comes from two sources.
The first one, that is present in the case of conventional SCs
as well, is the spin dependence of the order-parameter matrix
	��

�s� =	�s��T�g��, i.e., originates in the Pauli principle. An
additional source distinctive of the mirror-odd SCs is the
BSOC. It is convenient to eliminate g matrices from the ba-
sic equations of the theory and operate with objects whose
spin structure is only due to the BSOC. It can be achieved by
means of the transformation

Ĝ = X̂−1Ĝ�X̂,X̂ = ��0 0

0 g
� . �14�

Then,

Ĝ��� �i�n,p� = 	
�=�
���

����p��G����i�n,p� F����i�n,p�

F����i�n,p� − G����− i�n,p� � .

�15�

In deriving Eq. �15� the use has been made of the equality

g�t����− p�gt =�����p� , �16�

which is a consequence of the easy verified identity g�tgt

=−�.
It can be shown that Hso has no effect upon Eq. �13� to an

accuracy of �2�1, so that 	�s��T� is the solution of the stan-
dard BCS equation for a classic impure SC,6 and

	̃�s��n�

	�s�
=
�̃n

�n
= u��n� =

def

1 + �2���n
2 + 	�s�

2 �−1. �17�

Consequently, the impurity scattering does not reduce Tc to
the same accuracy.

According to general rules of quantum statistics,41 the
spin susceptibility at temperature T is given by the expres-
sion

�s,ij�T� =
1

2
T	
�l,p

Tr4�m̂iĜ��l,p�M̂ j�i�l�Ĝ��l,p�� , �18�

where m̂i=
1
2�B���0+�3���i− ��0−�3���i

t� is the bare spin-

magnetic-moment vertex,40 �B is the Bohr magneton, M̂ j is
the dressed 4�4 vertex, and the fact was used that the vertex

function M̂ j depends only on �l in the case of pointlike im-
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purities. The ladder-type equation for the dressed vertex is12

M̂i�i�l� = m̂i +
1

m�
	
p
�̂3Ĝ�i�,p�M̂i�i�l�Ĝ�i�,p��̂3, �19�

were �̂i=�i��0.
Let us consider first the susceptibility for a magnetic field

parallel to the polar axes c, i.e., set i=3 in Eq. �19�. The
necessary steps to solve this equation are the following:

�i� Introducing the representation M̂3=�BX̂−1M̂�X̂, we can
rewrite the equation in the form

M̂��i�l� = �0� �3 +
1

m�
	
p
�̂3Ĝ��i�,p�M̂��i�l�Ĝ��i�,p��̂3.

�20�

In terms of the Nambu-components

M̂� = �M��11� M��12�

M��21� M��22� � . �21�

Equation �20� is the 4�4 system of equations for spin ma-
trices M��ij�

M���
�11� = �3,�� + �P � M��11� + Q � M��12�

+ Y � M��21� + R � M��22����,

M���
�12� = − �Q � M��11� + V � M��12�

+ R � M��21� + K � M��22����,

M���
�21� = − �Y � M��11� + R � M��12�

+ U � M��21� + L � M��22����,

M���
�22� = �3,�� + �R � M��11� + K � M��12�

+ L � M��21� + T � M��22����. �22�

Here, the kernels P ,Q , . . . are the p integrals of the bilinear
tensor products of two Nambu-components of the propagator

Ĝ�

�
P

Q

Y

R

V

U

K

L

T

� =
1

�N�0�	p �
G�i�,p���G�i�,p���
G�i�,p���F��i�,p���
F��i�,p���G�i�,p���
F��i�,p���F��i�,p���

G�i�,p����− 1�G�− i�,p���
�− 1�G�− i�,p���G�i�,p���
F��i�,p����− 1�G�− i�,p���
�− 1�G�− i�,p���F��i�,p���

G�− i�,p���G�− i�,p���

� ,

�23�

N�0)= m / 2� is the 2D density of states, and the symbol �

denotes the action of a kernel on a �ij� Nambu-component of

M̂� according to the rule

�P � M��ij���� = P
��
��M���
�ij�. �24�

The evaluation of the kernels P ,Q , . . . can be carried out in a
manner similar to that of the Feynman diagram evaluation in
spinor electrodynamics. In the integrals over the momentum
space, one should change the Cartesian coordinates for polar
coordinates. The angular integration gives rise to a combina-
tion of Pauli matrices, and the remaining radial integration
can be elementarily performed with the help of the theory of
residues. We shall carry out the calculation in detail for the
kernel R, since the evaluation of other kernels is completely
analogous. By making use of Eqs. �7�–�9� and �15�, we have

R = 	
��=�

R����r����, �25�

where the indices in the parentheses are helicities of the elec-
tronic states and

R���� =� dp̂

2�
���

����p����
����p� , �26�

r���� =� d��p�
�

F����i�,p�F����i�,p� . �27�

Using Eq. �10�, we obtain

R���� =
1

4
����0 ���

0 +
1

2
���c� �����c� ����� , �,� = ±1.

�28�

Note that the right-hand sides of Eqs. �26� and �28� include
the direct products of a matrix which depends on the indices
���� and a matrix which depends on the indices ����. It is
much convenient, however, to deal with the direct products
of matrices one of which depends on the indices ���� and
another one on the indices ����. In the Feynman-diagram
language, it means to split up the four spin indices into a pair
of indices by means of which the kernel is connected with
other part of a ladder diagram coming from the left and a pair
of other indices through which the kernel is connected with a
part of the ladder diagram coming from the right. An advan-
tage of the representation obtained in such a way is that it
allows one to readily reduce the spin-matrix equation for the
spin-vertex function to a system of scalar equations. The
desired rearrangement of the spin indices is possible owing
to Fierz-like identities for the direct products of the Pauli
matrices.42,43 Identities needed have the form

���
0 ���

0 =
1

2
����

0 ���
0 + �n · �����n · ����

+ �n� ����
n �n� ����

n � , �29�

�n� ����
n �n� ����

n = ���
0 ���

0 − �n · �����n · ����,

�30�

where n is any 3D vector. By means of these identities R����
can be transformed to the form
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R���� =
1

4� ���
0 ���

0 +
1

2
�c� ����

n �c� ����
n �c · �����c · ���� +

1

2
�c� ����

n �c� ����
n

�c · �����c · ���� +
1

2
�c� ����

n �c� ����
n ���

0 ���
0 +

1

2
�c� ����

n �c� ����
n �

����

. �31�

Further, substituting Eq. �9� into Eq. �27�, we obtain

r���� =� d��p�
�


	̃�s�
2

��i�̃n�2 − ����
2 − 	̃�s�

2 ���i�̃n�2 − ����
2 − 	̃�s�

2 �
=

	̃�s�
2

2��̃n
2 + 	̃�s�

2 �
1 − �

�̃n
2 + 	̃�s�

2

1

��pF�2 + �̃n
2 + 	̃�s�

2

1

��pF�2 + �̃n
2 + 	̃�s�

2

1 + �

�̃n
2 + 	̃�s�

2
�

����

. �32�

The substitution of Eqs. �31� and �32� into Eq. �25� finally
gives

R =
	̃�s�

2

4Ẽn

w , �33�

where Ẽn=u��n�En=��̃n
2+ 	̃�s�

2 , En=��n
2+	�s�

2 and

w =
���

0 ���
0

Ẽn
2

+ �c� ����
n �c� ����

n �1/2

Ẽn
2

+
1/2

��pF�2 + Ẽn
2�

+
�c · �����c · ����

��pF�2 + Ẽn
2

. �34�

Analogous calculations yield

P = T = R, Q = Y = R = K = L =
i�̃n	̃�s�

4Ẽn

w ,

V = U = −
2�̃n

2 + 	̃�s�
2

4Ẽn

w . �35�

The above calculations show two things. The first one is
that the contributions to R �and also to P ,Q , . . .�, from pro-
cesses at which a pair of quasiparticles of given helicities
scatter into states with any possible helicities, are generally
of the same order. In other words, the interbranch transitions
�with a change of helicity� are just as important as intra-
branch transitions so that all possible scattering channels
should be treated on equal footing. This reflects the known
quantum-mechanical fact that there is no general reasons for
amplitudes of some scattering channels would be superior to
other ones by scattering on a pointlike potential. As opposed
to this, two recently published papers35,36 denied the neces-
sity of taking into account the impurity scattering induced
interbranch transitions, i.e., the off-diagonal components of
the matrix r����. One paper states without any supporting
evidence that one may omit the interbranch transitions if max
�
�D

�pF
, 1
 ��1 ��D is the usual BCS cutoff�,35 whereas the sub-

sequent paper36 claims also without any proof and disagree-

ing with the previous one that the omission is allowed if
�−1�

Tc

�pF
�1. Yet Eqs. �31� and �32�, as well as the final

expressions �38� and �39� for the dressed spin-vertex do not
confirm those statements. Arguments for the neglect of the
interbranch transitions at �−1�1 are unconvincing to us; par-
ticularly in view of the fact that if the arguments were taken
seriously, they actually lead to a value of the spin-relaxation
time in the normal state �when �−1=0� that differs from �so
given by the DP theory.32 Second thing is that the parameter
� that enters Eq. �32� through the density of states of two
branches falls out of the final expressions for R. The same is
true for the all other kernels—they depend on the spin-orbit
constant � only through parameters � and .

�ii� By means of Eqs. �33�–�35� and by making use of the
ansatz

M̂��i�l� = 	
i=0

3

�i� �3M�i�, �36�

where M�i� are c numbers, Eq. �20� can be transformed to the
form

M�0� = 1 +
�

Ẽn���pF�2 + Ẽn
2�

�	̃2M�0� + i�̃n	̃M�1�� ,

M�1� = −
�

Ẽn���pF�2 + Ẽn
2�

�i�̃n	̃M�0� − �̃n
2M�1�� ,

M�2� = M�3� = 0, �37�

where �= �2��−1. The unique solution of Eq. �37� has the
form

M�0� = 1 + ��0�� ,M�1� = ��1�� ,

��0�� =
�

D�

A�,��1�� = −
�

D�

C� , �38�

where
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A� =
	̃�s�

2

Ẽl���pF�2 + Ẽl
2�

, B� = −
�̃l

2

Ẽ�s����pF�2 + Ẽl
2�

,

C� =
i�̃l	̃�s�

Ẽl���pF�2 + Ẽl
2�

, D� = 1 − ��A� − B�� . �39�

The extraction of unity from M�0� corresponds to the extrac-
tion of the bar spin-vertex from the total impurity-dressed
spin vertex.

One can represent �s� as a sum of two terms �a and �b. In
the Feynman’s diagram language, �a is the contribution of a
loop where the both response spin vertex and driving spin
vertex are the bare ones �the so-called “empty” loop�, while
the term �b is the sum of the ladder-type diagrams with
impurity-lines insertions. So the loop corresponding to �b

contains �BX̂−1��0��3�X̂ as the response vertex and

�BX̂−1�̂�X̂ as the driving spin vertex. Since the sum 	�,p
entering �b converges absolutely, the p integration may be
performed first. However, an analogous sum entering �a for-
mally diverges and therefore the summation must be done in
the proper order: �n first, then p. It is known that in order to
interchange the order of summation, one should before per-
form a summation by parts over �n.41 Following Ref. 41, we
get

�a�

�n
= 1 − �T	

l

A�,
�b�

�n
= − �T	

l

�

D�

�A�
2 − C�

2� , �40�

so that

�s��T�
�n

= 1 − �T	
l

A�

D�

, �41�

where �n=2�B
2N�0� is the 2D normal-state susceptibility. As

a result

�s��T�
�n

= 1 − �T	
l

	2

El
3�1 −

��pF�2

��pF�2 + El�El + 1/2��� .

�42�

For a magnetic field parallel to the plane of the electron
motion, the same analysis gives rise to

�s��T�
�n

= 1 − �T	
l

	2

El
3�1

−
��pF�2�El + 1/2��

��pF�2�2El + 1/2�� + 2El�El + 1/2��2� .

�43�

Equations �42� and �43� define the spin susceptibility tensor
at any impurity concentration and temperature. At T=0, the
summation over l goes into an integration over � according
to the rule �l→� ,T	l→�−�

� d� /2�. In general, the integrals
must be done numerically. In the clean limit 	�s��0��
1,
Eqs. �42� and �43� give known results.20,21 In the dirty limit
	�s��0���1, these equations give rise to

1

�n
��s�,�s�� = � 2�

8	�s��0��
�1,

1

2
�, 2�	�s��0�� � 1

�1,1�, 	�s��0�� � 2 �
�44�

at �1 and

��s�,�s�� = �n�1,1� �45�

at  1. The existence of two intervals of the parameter
	�s�� in �44� with a different behavior of the spin suscepti-
bility reflects a remarkable feature of the DP mechanism of
the spin relaxation. Although the spin-flip transitions are in-
duced by impurity scattering, the very frequent scattering
such that the mean-free time � is shorter than the inverse
frequency of the spin precession about the fictitious magnetic
field Bf ��pF, i.e., �1, makes spin-flip transitions less fre-
quent than non-spin-flip scattering 1

�so
�2 1

� �
1
� .

32,33 Equa-
tion �43� shows that the spin fluctuations in a parity-odd SC
are sensitive just to the spin-relaxation time rather than to the
mean-free time. The tensor �s

ij is strongly anisotropic at
	�s��so
1 but is isotropic at 	�s��so�1. At  1, when �so
and � are of the same order of magnitude, the two intervals
coalesce into one in Eq. �45�.

We turn now to the 3D case. All calculations can be car-
ried out along the lines of the 2D case. Just as in the 2D case,
the energy spectrum of H0 consists of two branches but with
anisotropic energies

��
�3D� =

p2

2m
� �pz , �46�

where z is the sin of the angle between p and the direction of
the polar axis c. Since

��p� c� · � = ��p�� c� · � = �pz�p̂�� c� · � , �47�

where p�=p−c�c ·p� is the component of p perpendicular to
c, the Green’s matrix has the same form as given by Eqs.
�6�–�9� but with substitutions

����
�3D� = ������→ �z� , �48�

for ���� and

��3D�
��� �p� =�����p�� , �49�

for �����p�. The equation for the impurity-dressed spin-
vertex function has the same form as Eq. �19�, where 	p
now means the 3D integration over the momentum space. It
can also be resolved by means of the ansatz �36� after 3D
counterparts of the kernels P ,Q ,Y ,R , . . . of Eq. �23� are de-
termined. Let us consider as an example the kernel
R�3D�—the 3D analog of the kernel R. We have
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R�3D� =
1

�N3D�0� 	
��=�

� d3p

�2��3F����i�,p,z�F����i�,p,z���3D�
��� �p����3D�

��� �p�

= 	
��
� p2dp

mpF�
�

0

� 1

2
sin !d!F����i�,p,z�F����i�,p,z�� d"

2�
�����p��������p�� , �50�

where N�3D��0�=mpF /2�2 is the 3D density of states on the Fermi level. The last integration in Eq. �50� over the azimuthal
angle " does not differ from the analogous integration in the 2D case and hence yields the matrix R���� defined by Eq. �31�.
So

R�3D� = 	
��

R����
1

2
�

0

�

sin !d!� d��p�
�

� p

pF
�F����i�,p,z�F����i�,p,z� , �51�

where the factor p
pF

occurs because of the dependence of the
3D density of states on p, N�3D��p�=mp /2�2=N�3D��0� p

pF
.

The p integration in Eq. �51� can be performed with the help
of the theory of residues; as a result we have an expression
which differs from its 2D counterpart, given by the right-
hand side of the Eq. �32�, by only the changes �→�z and
�→2�z. Finally, we obtain

R�3D� = � 	̃�s�
2

4Ẽn

� 1

2
�

−1

1

dzw3D�z� , �52�

where

w3D�z� = w��→ �z� , �53�

with w given by Eq. �34�. Thus, R�3D� is obtained from its 2D
counterpart R by the substitution

w → �w =
1

2
�

−1

1

w3D�z�dz . �54�

The same is true with respect to other kernels
P�3D� ,Q�3D� , . . .. The substitution �54� is equivalent to the
substitution

1

��pF�2 + Ẽn
2
→

1/2

�pF
���pF�2 + Ẽn

2
ln

���pF�2 + Ẽn
2 + �pF

���pF�2 + Ẽn
2 − �pF

,

�55�

in Eq. �34�. With the aid of these results and following along
the lines of the 2D case, we get

�s�
�3D�

�n
�3D� = 1 − �T	

�l

�	�s�

El
�2 K��l�

Ẽl − �K��l�
�56�

and

�s�
�3D�

�n
�3D� = 1 − �T	

�l

�	�s�

El
�2 1 + K��l�

2Ẽl − ��1 + K��l��
, �57�

where

K��l� =
Ẽl

2/2

�pF
���pF�2 + Ẽl

2
ln

���pF�2 + Ẽl
2 + �pF

���pF�2 + Ẽl
2 − �pF

. �58�

At T=0 and in the clean limit 	�s��
1, Eqs. �56� and �57�
yield

1

�n
�3D� ��s�

�3D�,�s�
�3D�� = �1,

1

2
�� �� 2�pF

3	�s��0��2

, �pF�	�s��0�

1, �pF
	�s��0� �.
�59�

In the dirty limit 	�s��0���1, these give rise to

1

�n
�3D� ��s�

�3D�,�s�
�3D�� = � 2�

12	�s��0��
�1,

1

2
�, 2�	�s��0�� � 1

�1,1�, 	�s��0�� � 2 �
�60�

at �1 and

��s�
�3D�,�s�

�3D�� = �n
�3D��1,1� �61�

at  1. Thus, the results for the 3D case are completely
analogous to those for the 2D case.

III. CONCLUDING REMARKS AND SUMMARY

Equations �44� and �45� as well as Eqs. �60� and �61�
describe a remarkable fact: a SC with the s-wave singlet
pairing and hence with a fully gapped energy spectrum can
show the spin susceptibility of the normal, gapless state be-
cause of the BSOC. In other words, the SC can have familiar
thermal properties, for example, an activation-type tempera-
ture dependence of the specific heat �exp�−	�s��0� /T�, but
at the same time it can show the temperature-independent
spin susceptibility as if it has nodes in the energy gap. It
should be noted that scattering on impurity atoms with a
large atomic number Z
1 is also able to result in an analo-
gous effect in a conventional SC. But because the ratio b /a
of the spin-orbital part of the scattering amplitude, u�p ,p��
=a�p−p��+ ib�p−p��pF

−2�p�p�� ·�, to the scalar one is of
order Ze2 /�c this could be under a severe condition �Tc
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�
nZ

n �Z e2

�c �2,12 where nZ is the concentration of the heavy at-
oms and nimp is the total impurity concentration.

Thus, there is a variety of scenarios of temperature inde-
pendent �s.

25,26,28,29 One should also keep in mind that an
applied magnetic field usually used in experiments on the
nuclear-magnetic resonance is comparable with the critical
field of a sample. It is known that in the case of conventional
SCs with the ISOC, the effect of the field is to increase
�s�0�.44 A corresponding theory for SCs with the BSOC is
not developed yet, however, it seems that an analogous effect
should be present in such SCs too. Therefore, the fact that
�s�0���n�Tc� alone does not allow one to judge definitely
the character of the pairing and the energy spectrum of a
given parity-odd SC. It is necessary to have more spin-
dependent characteristics calculated for both “clean” and
“dirty” cases, for example, the upper critical magnetic field
Hc2�T� as a function of the angle between the field and the
polar axes and the magnetic-field dependence of the critical
current Jc�H�, to compare them to experimental data. The
finite value of �s�0� under the condition of a finite-energy
gap apparently means the ability of the Cooper-pair conden-
sate to participate in the paramagnetic magnetization under
the action of an external magnetic field. Therefore, a study of
the decay of the magnetization after the inducing magnetic
field is switched off could shed light on the nature of the
magnetization and help to understand the gap structure. Cor-
respondingly, it would be interesting to calculate the dy-
namic spin susceptibility �s�� ,T� for all scenarios men-
tioned.

The results obtained are applicable, in the first instance, to
SCs without strong magnetic correlations. Perhaps the most
simple of those are quasi-2D asymmetric SCs: �a� There are
experimental indications in favor of the existence of super-
conductive states localized on a surface of nonsuperconduc-
tive crystals.18 In this case, the intracrystalline electric field
and hence the BSOC is caused by the crystal lattice distur-
bance near the surface. �b� Owing to the proximity effect, the
parity-odd superconductivity can be induced in a polar non-
superconductive metal near the contact with a conventional
SC. �c� Ultrathin films of a conventional SC, for example, Al
or Be, covered with a monolayer of another metal, for ex-
ample, Au, could also serve as a model system of a 2D asym-
metric SC.45 In the latter case, spin-orbit coupling can be due
to both a double electric layer formed on the junction of two
conductors with different work functions17 and the strong
spin-orbit component of the electron scattering on Au ions.

The situation with bulk heavy fermion SCs of polar sym-
metry, in particular, with CePt3Si on which the major part of
experiments published so far was performed, seems much
more complicated. Almost total and simultaneous destruction
of antiferromagnetism and superconductivity by substitution
of 2% La for Ce �Ref. 46� indicates that the Kondo-like
exchange interaction is more important for superconductivity
in this compound than the broken central symmetry because
the BSOC is apparently of the same order in both CePt3Si
and LaPt3Si. Therefore any approach that ignores the inter-
action responsible for the Kondo-lattice formation, like that
used in this paper, has a restrictive applicability and may be
used, in the first instance, for an analysis of general, quality
aspects of the superconductive state of this material.

The next problem is whether this superconductor is clean
or dirty, i.e., the question about the mean-free time �. The
border between clean and dirty superconductivity lies at �b
= ��Tc�−1. So Tc=0.65 K �Ref. 46� corresponds to �b�0.4
�10−11 s. This time does not seem too short if one takes
into account the many-element character of the compound;
for comparison, the electron free time in single-crystal high-
purity potassium �=1.6�10−10 s is only one and a half or-
ders of magnitude longer.47 Reference 24 put CePt3Si to clean
SCs, that is equivalent to the admission that �#�b. One of
arguments for that was the measured value of the rate of a
change of the upper critical field Hc2� �meas�=8.5 T /K �Hc2�
�dHc2 /dT� was found to be much greater than the calcu-
lated one, Hc2� �calc�=0.77 T /K. It is unclear, however,
which theory was used; to the best of our knowledge, correct
calculations of Hc2�T� for parity-odd SCs was never pub-
lished yet. Likewise, the relation Hc2�0�=

$0

2��0
2 between the

coherence length �0=
vF

2�Tc
and Hc2�0� used in Ref. 24 is

hardly valid in SCs with the BSOC too. An estimate for the
Fermi velocity obtained was vF�5�105 cm /s. The value
of vF about velocity of sound is unusual and requires addi-
tional evidences. Thus, it does not appear that the classifying
CePt3Si as a clean SC can be regarded as definitive; it would
seem that further work is needed to resolve the problem.
Besides, � might be inferred from experiments performed on
the normal phase, for example, from the form of the IR ab-
sorption line near the cyclotron resonance as a function of
the applied frequency; therefore, the value of �Tc could be
obtained without reference to superconducting properties.

However, the central question is that about the value of
the spin-orbit constant �. Just as for any material constant, it
is most reliable to extract � from direct experimental mea-
surements without relying on any theoretical estimates. In
the case of asymmetric 2D systems mentioned above and
single crystals of polar symmetry �or polycrystalline samples
with a primary direction of the polar axis�, a candidate ex-
periment could be detecting a change in the value of the
critical current arising with the switching of the �relatively
weak� applied magnetic field. This asymmetric effect is a
consequence of the presence of a term bilinear in the super-
current Js and the magnetic field of the form �c�H� ·Js
�where c is the polar axis� in the free energy of a polar SC.
This is a truly symmetry effect and hence should not be very
sensitive to the magnetic ordering and other particular prop-
erties of the SC. Its magnitude is strictly proportional to �.43

If, because of features of the electronic band structure of a
compound, � appears to be not too small, an evaluation of �s
in an impure SC becomes a much more involved problem. In
principle, the triplet channel of pairing can be included in the
formalism presented �see, the Appendix B and Refs. 28 and
29�. However, 	�t� is not a unique source of an additional �
dependence. Another sources are a finite effective range of
the real impurity potential and an exact form of the irreduc-
ible two-particle amplitude in the Cooper channel. The point
is that due to the BSOC, the exact T matrix of scattering on
a scalar impurity of a finite radius acquires terms of the order
of � with a nontrivial spin-momentum dependence. An at-
tempt to determine such a dependence for the 2D semicon-
ductor systems has been undertaken recently48 �an analogous
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term in the Cooper channel T matrix was pointed out
too28,29�. Under the circumstances, the lifetime of an electron
becomes a function of its helicity ��+�

−1 −��−�
−1 ��, the vertex

function M̂ j� of Eq. �19� depends on both �l and p, and the
finding of a solution of Eq. �19� becomes an intensive task.
Besides, the phase of the Cooper pair condensate induced by
an applied magnetic field,20 whose contribution to the sus-
ceptibility can be shown to be negligibly small at ��1,
should be taken into consideration if ��1.

In summary, we have shown that the effect of the DP
mechanism of the spin-flip impurity scattering is to increase
the value of the spin susceptibility of a parity-odd SC up to
that of the normal state. The main consequence of this result
is that a weak temperature dependence of the spin suscepti-
bility of parity-odd SCs below Tc or even the total absence of
such a dependence is not necessary due to the presence of the
nodes in the energy gap but can well be a result of a disorder.
In other words, the impure polar SC can behave as a gapless
SC with respect to the Zeeman interaction with an applied
magnetic field remaining in a full-gap state. An analogous
result may appear to be valid also for parity-odd SCs of
cubic symmetry, where the BSOC of the Dresselhaus-type
can be essential. The methods of treating the impurity scat-
tering described in the present paper will be useful in calcu-
lations of other equilibrium characteristics and necessary for
an analysis of nonequilibrium processes in impure parity-odd
SCs.
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APPENDIX A

The purpose of this appendix is to support the statement
that the superconducting correlations in the model defined by
Eqs. �2�–�5� do contain the triplet part in spite of the singlet
form of the order parameter 	��

�s� =	�s�g��.
To see how this happens, it is sufficient to consider the

anomalous Green function F�i� ,p��� of a clean SC near Tc,
when this function has the simplest form

F�i�,p��� � G��
�0��i�,p�	���− 1�G��

�0�t�− i�,− p� . �A1�

Here,G��
�0��i� ,p�=	�=����

����p� , G���
�0� �i� , p�G���

�0� �i� , p�= �i�
−�����p��−1 is the electron Green function of the normal state.
By making use of the equalities

g ·����t�− p� · gt =�����p�, �����p� ·�����p� = ��������p� ,

�A2�

one can represent the F function as the sum of the singlet
component

	�s��T�g���	
�

1

2
G���

�0� �i�,p��− 1�G���
�0� �− i�,p�� �A3�

and the triplet component

	�s��T�Aijp̂i�� jg���

��	
�

1

2
sgn �G���

�0� �i�,p��− 1�G���
�0� �− i�,p�� ,

�A4�

where Aij =eijkck. As it is seen, the source of this triplet com-
ponent is the broken mirror symmetry of the normal state
rather than the triplet channel of the pairing interaction. It is
just for this reason the zero-temperature spin susceptibility
was found to be finite in Refs. 20–22. The presence of im-
purities is not able to eliminate this source of the triplet
correlations. Moreover, as the present calculations show, the
impurity scattering only modifies the influence of this source
but not suppress it.

APPENDIX B

In the main body of the text, we used a BCS-like model,
where all the channels of the pairing interaction except for
the s-wave channel were neglected. The main purpose of this
appendix is to sketch out the Green’s function formalism
which takes into account the pairing in both the s- and
p-wave channels and estimate the relative role of the triplet
order parameter that appears owing to the p-wave pairing.
The corresponding formalism for the clean case is mainly
known.13,20 An extension to impure systems can be carried
out by standard methods41 along the lines of the main text,
and we shall therefore omit some details. For the sake of
definiteness, we consider a 2D SC.

If, in addition to the s-wave part of Eq. �5�, one includes
the p-wave part

Vp

��
���
r1,r2
r3,r4� = �p��kg����g�k�����r1 − r2�

���r3 − r4���r1 − r3��12
i �34

i ,

�B1�

in the pairing Hamiltonian, where �12
i = �� /�r2

i −� /�r1
i � /2ikF;

equations of the main text undergoes some changes. The
self-consistency equation becomes

	���p;T� = − T	
�
� d2p

2�
V
��
���p,k�F���i�,− k� ,

V
��
���p,k� = �sg��g��
t + �p��ig����p̂ · k̂��gt�i���.

�B2�

Just as in the clean case, the spin structure of the order-
parameter matrix takes the form

	���p� = 	�s�g�� + 	�t��p��p̂� c · ����g��

= 	
�=�

���
����p̂�	���g��, 	��� = 	�s��	�t�. �B3�

This means that the energy branched of different helicities
acquire different energy gaps. Accordingly, Eq. �9� transform
into
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�G����i�n,p�

F����i�n,p� � =
1

�i�̂n�2 − ����
2 − 	̃���

2 �n�
�i�̃n + ����

	̃���
� .

�B4�

Equations �11� and �12� which define the c-number functions

�̃n and 	̃��� remain valid. With this information, we are in a
position to estimate 	�t�. After substituting Eq. �B3�, the self-
consistency Eq. �B2� transforms into the system of equations

	�s� = − �sT	
�
� kdk

2�
�F�+��i�,k� + F�−��i�,k�� , �B5�

	�t� =
�p

2
T	
�
� kdk

2�
�F�+��i�,k� − F�−��i�,k�� . �B6�

Actually the sum and integral in Eqs. �B5� and �B6� involve
a logarithmic divergence for large energies. This divergence
is known to be removed by a cutoff procedure. BCS applied
the cutoff in the kinetic-energy variable ��k�.1 As it was first
noticed in Ref. 49, in the case of an impure SC, it is conve-
nient instead to cut off the frequency �n. We shall also use
this procedure. The system of Eqs. �B5�, �B6�, �11�, and �12�
can be solved by means of the iteration method. Let us as-
sume that 	�t���	�s��	�s�. Then one can drop 	�t� in the
right-hand side of Eq. �B5� that reduces Eq. �B5� to the form

	�s� = − �sT	
�
� kdk

2� 	
�=�

	̃�s�

�i�̃�2 − ����
2 − 	̃�s�

2
. �B7�

Further let us assume that at ��1,

�̃n

�n
=
	̃�s�

	�s�
, �B8�

and note that to an accuracy of �2,

kdk

2�
� N�0�d�����1� �� . �B9�

Then it is seen that the k integration reduces Eq. �B7� to the
standard BCS self-consistency equation

	�s� = N�0��T 	

�n
%�D

	�s�

��n
2 + 	�s�

2
. �B10�

Thus 	�s��	BCS. Let, for the sake of simplicity, �p /�s�1.
Then one can drop 	�t� in the functions F����i� ,k� entering
the right-hand side of Eq. �B6� too. After that Eq. �B6� be-
comes

	�t� =
�p

2
T	
�
� kdk

4� 	
�=�

sign���
	̃�s�

�i�̃�2 − ����
2 − 	̃�s�

2
.

�B11�

By making use of Eqs. �B8� and �B9�, the integration over k
transforms the right-hand side of Eq. �B11� to

�p�N�0��T 	

�n
%�D

	�s�

��n
2 + 	�s�

2
. �B12�

Hence,

	�t�

	�s�
� �� �p

2�s
� , �B13�

just as in the clean case.20 It remains to check the consistence
of the assumption �B8�. Equations �11� and �12� together
with Eq. �B4� give

i�̃��n� = i� −
1

2
� d��k�

2�� 	
�=�

i�̃ + ����

�i�̃�2 − ����
2 − 
	̃���
2

,

�B14�

	̃�����n� = 	��� −
1

2
� d��k�

2�� 	
�=�

	̃���

�i�̃�2 − ����
2 − 
	̃���
2

.

�B15�

By making use of Eq. �B9� and omitting �2 terms, one can
reduce Eq. �B14� to

i�̃ = i� −
1

2
� d��k�

2�� 	
�=�

i�̃

�i�̃�2 − ����
2 − 
	̃���
2

, �B16�

that to the same accuracy is equivalent to

�̃

�
= 1 +

�̃

2�� 1 − �

��̃2 + 	̃�+�
2

+
1 + �

��̃2 + 	̃�−�
2 � . �B17�

The right-hand side of Eq. �B17� is an even function of � and
hence dropping �2 corrections can be taken at �=0. Then Eq.
�B17� coincides with an analogous equation for an impure
conventional SC.6 Thus we have

�̃n

�n
= u��n�,u��n� = 1 +

1/2�
��n

2 + 	�s�
2

. �B18�

Consider now Eq. �B15�. Since the second term of right-hand
side of Eq. �B15� is the same for �=�, we have

	̃�t� = 	�t�, �B19�

i.e., the triplet part of the order parameter is not subject to
impurity renormalization at the s-wave impurity scattering
assumed. This fact becomes evident if one considers the first
impurity-induced correction to 	�t��p���. At T�Tc �where
the correction has the simplest form�, it is

1

m�
	
p

G��
�0��i�,p�	�t���p� c� · ����g���− 1�G��

�0�t�− i�,− p�

=
1

m�
g��	

p
	
�=�

�

2
G���

�0��i�,p�	�t��− 1�G���
�0��− i�,p� .

�B20�

It is seen, first, that this expression has the singlet spin struc-
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ture rather than the triplet one and, second, that its magnitude
is of the order of �2 �one � comes from 	�t��� and other
from the small difference between the densities of states on
two Fermi surfaces�.

An analogous reasoning leads to that to the accuracy of �2

corrections

	̃�s�

	�s�
= u��n� . �B21�

Indeed, by substituting Eqs. �B19� and �B20� into Eq. �B15�
we see that the integral term on the right-hand side of Eq.
�B15� is an even function of � and therefore it can be taken
at �=0 to the same accuracy, i.e., written in the form

� d��k�
2��

	̃�s�

�i�̃�2 − �2 − 
	̃�s�
2
. �B22�

Then Eq. �B15� can be written as

	̃�s�� 	̃�t� = 	�s��	�t� −� d��k�
2��

	̃�s�

�i�̃�2 − �2�k� − 
	̃�s�
2
.

�B23�

Upon using Eq. �B19�, Eq. �B23� reduces to the standard
equation for 	�s�.

6 This proves Eq. �B21�.
Thus, Eqs. �B18�–�B21� provide the self-consistence so-

lution for Eqs. �11�, �12�, and �B2� at ��1. Further, 	�t�
appears in the Green’s functions through combinations

	̃���n� = 	�s�u��n��	�t�. �B24�

In the dirty limit Tc��1, when u��n���2�	�s��−1, the ratio of
the second term in Eq. �B24� to the first one is of the order of
�Tc���, i.e., is even smaller than in the clean limit. It should
be stressed that although the neglect of 	�t� is apparently
correct for calculations of equilibrium properties of polar
SCs with ��1, the account of 	�t� can appear to be neces-
sary in some subtle electrodynamic problems where the dif-
ference between the energy gaps of electrons with opposite
helicities may play an essential role.

1 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 �1957�.

2 A. M. Clogston, Phys. Rev. Lett. 9, 266 �1962�; B. S. Chan-
drasekhar, Appl. Phys. Lett. 1, 7 �1962�.

3 G. Sarma, J. Phys. Chem. Solids 24, 1029 �1963�.
4 P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 �1964�; A. I.

Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136
�1964� �Sov. Phys. JETP 20, 762 �1965��.

5 Y. Yosida, Phys. Rev. 110, 769 �1958�.
6 A. A. Abrikosov and L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 39, 480

�1960� �Sov. Phys. JETP 12, 337 �1961��.
7 P. W. Anderson, J. Phys. Chem. Solids 11, 26 �1959�.
8 R. H. Hammond and G. M. Kelly, Phys. Rev. Lett. 18, 156

�1967�.
9 F. Reif, Phys. Rev. 106, 208 �1957�.

10 G. M. Androes and W. D. Knight, Phys. Rev. Lett. 2, 386
�1959�.

11 R. A. Ferrell, Phys. Rev. Lett. 3, 262 �1959�; P. W. Anderson,
ibid. 3, 325 �1959�.

12 A. A. Abrikosov and L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 42,
1088 �1962� �Sov. Phys. JETP 15, 752 �1962��.

13 S. Fujimoto, J. Phys. Soc. Jpn. 76, 051008 �2007�.
14 E. I. Rashba, Fiz. Tverd. Tela �S.-Peterburg� 1, 407 �1959� �Sov.

Phys. Solid State 1, 366 �1959��; R. C. Casella, Phys. Rev. Lett.
5, 371 �1960�; F. J. Ohkawa and Y. Uemura, J. Phys. Soc. Jpn.
37, 1325 �1968�.

15 C. P. Pole, Handbook of Superconductivity �Academic, New
York, 1999�.

16 P. Haen, P. Lejay, B. Chevalier, B. Lloret, J. Etourneau, and M.
Sera, J. Less-Common Met. 110, 321 �1985�.

17 V. M. Edelstein, Phys. Rev. B 67, 020505�R� �2003�.
18 Y. Levi, O. Millo, A. Sharoni, Y. Tsabba, G. Leitus, and S.

Reich, Europhys. Lett. 51, 564 �2000�.
19 L. N. Bulaevskii, A. A. Gueinov, and A. I. Rusinov, Zh. Eksp.

Teor. Fiz. 71, 2356 �1976� �Sov. Phys. JETP 44, 1243 �1976��.
20 V. M. Edelstein, Zh. Eksp. Teor. Fiz. 95, 2151 �1989� �Sov.

Phys. JETP 68, 1244 �1989��.
21 L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004

�2001�.
22 P. A. Frigeri, D. F. Agterberg, and M. Sigrist, New J. Phys. 6,

115 �2004�.
23 M. Yogi, Y. Kitaoka, S. Hashimoto, T. Yasuda, R. Settai, T. D.

Matsuda, Y. Haga, Y. Ōnuki, P. Rogl, and E. Bauer, Phys. Rev.
Lett. 93, 027003 �2004�; M. Yogi, H. Mukuda, Y. Kitaoka, S.
Hashimoyo, T. Yasuda, R. Settai, T. D. Matsuda, Y. Haga, Y.
Onuki, P. Rogl, and E. Bauer, J. Phys. Soc. Jpn. 75, 013709
�2006�.

24 E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E. W. Scheidt, A.
Gribanov, Yu. Seropegin, H. Noel, M. Sigrist, and P. Rogl, Phys.
Rev. Lett. 92, 027003 �2004�.

25 S. Fujimoto, J. Phys. Soc. Jpn. 76, 034712 �2007�.
26 Y. Yanase and M. Sigrist, J. Phys. Soc. Jpn. 76, 043712 �2007�.
27 See A. T. Zheleznyak, V. M. Yakovenko, and I. E. Dzyaloshin-

skii, Phys. Rev. B 55, 3200 �1997�, and references therein.
28 P. A. Frigeri, D. F. Agterberg, and M. Sigrist, arXiv:cond-mat/

0505108 �unpublished�.
29 P. A. Frigery, Doctor thesis, ETH Zurich, 2006.
30 K. Togano, P. Badica, Y. Nakamori, S. Orimo, H. Takeya, and K.

Hirata, Phys. Rev. Lett. 93, 247004 �2004�.
31 T. Yokoya, T. Muro, I. Hase, H. Takeya, K. Hirata, and K. To-

gano, Phys. Rev. B 71, 092507 �2005�.
32 T. Shimizu and K. Morigaki, J. Phys. Soc. Jpn. 28, 1468 �1959�;

M. I. Dyakonov and V. I. Perel’, Fiz. Tverd. Tela �S.-Peterburg�
13, 1954 �1971� �Sov. Phys. Solid State 13, 3023 �1972��.

33 V. M. Edelstein, J. Phys.: Condens. Matter 5, 2603 �1993�.
34 Optical Orientation, edited by F. Meier and B. P. Zacharchenya

�North-Holland, Amsterdam, 1984�.
35 V. P. Mineev and K. V. Samokhin, Phys. Rev. B 75, 184529

VICTOR M. EDELSTEIN PHYSICAL REVIEW B 78, 094514 �2008�

094514-12



�2007�.
36 K. V. Samokhin, Phys. Rev. B 76, 094516 �2007�.
37 V. M. Edelstein, Phys. Rev. B 72, 172501 �2005�.
38 V. M. Edelstein, Phys. Rev. Lett. 75, 2004 �1995�.
39 R. P. Kaur, D. F. Agterberg, and M. Sigrist, Phys. Rev. Lett. 94,

137002 �2005�.
40 D. Rainer and J. W. Serene, Phys. Rev. B 13, 4745 �1976�; J. W.

Serene and D. Rainer, ibid. 17, 2901 �1978�.
41 A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Meth-

ods of Quantum Field Theory in Statistical Physics �Dover, New
York, 1963�.

42 P. J. Hirschfeld, P. Wolfle, and D. Einzel, Phys. Rev. B 37, 83
�1988�.

43 V. M. Edelstein, J. Phys.: Condens. Matter 8, 339 �1996�.
44 P. Fulde and K. Maki, Phys. Rev. 139, A788 �1965�.
45 P. W. Adams �private communication�.
46 D. P. Young, M. Moldovan, X. S. Wu, P. W. Adams, and J. Y.

Chan, Phys. Rev. Lett. 94, 107001 �2005�.
47 D. E. Chimenti, C. A. Kukkonen, and B. W. Maxfield, Phys. Rev.

B 10, 3228 �1974�.
48 A. Palyi and J. Cserti, Phys. Rev. B 76, 035331 �2007�.
49 D. Markowitz and L. P. Kadanoff, Phys. Rev. 131, 563 �1963�.

ANOMALOUS EFFECT OF DISORDER ON SPIN… PHYSICAL REVIEW B 78, 094514 �2008�

094514-13


